This article covers practical machine learning applications, the final part of the series. I’ll show how the linear algebra concepts from previous articles apply to neural networks, gradient computation, and efficient vectorized operations.
FaaS or Function as a Service also known as Serverless computing implementations are gaining popularity. Discussed often are the cost savings and each implementations relationship to the physical and network architecture of a specific platform or vendor. While many of the cost and infrastructure advantages of FaaS are compelling, its only one of many advantages. Below, I hope to demonstrate how easy it is to develop and deploy FaaS components into a custom Kubernetes cluster. The functions I develop are nearly all business logic, and I believe therein lies the advantage, high-density business logic. Functions can have a higher degree of focus directly on business logic and communication with other services. Functions can communicate with other functions, microservices or monoliths. In this article, I demonstrate this with Elasticsearch.
There is an overwhelming number of options for developers needing to provide data visualization. The most popular library for data visualization in Python is Matplotlib, and built directly on top of Matplotlib is Seaborn. The Seaborn library is “tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels.”
Pandas bring Python a data type equivalent to super-charged spreadsheets. Pandas add two highly expressive data structures to Python, Series and DataFrame. Pandas Series and DataFrames provide a performant analysis and manipulation of “relational” or “labeled” data similar to relational database tables like MySQL or the rows and columns of Excel. Pandas are great for working with time series data as well as arbitrary matrix data, and unlabeled data.
Python is one of The Most Popular Languages for Data Science, and because of this adoption by the data science community, we have libraries like NumPy, Pandas and Matplotlib. NumPy at it’s core provides a powerful N-dimensional array objects in which we can perform linear algebra, Pandas give us data structures and data analysis tools, similar to working with a specialized database or powerful spreadsheets and finally Matplotlib to generate plots, histograms, power spectra, bar charts, error charts and scatterplots to name a few.